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Named Entity Recognition
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Task

Find segments of entity mentions in input text and tag with labels.

Example inputs:

Trump attacks BMW and Mercedes

U.N. official Ekeus heads for Baghdad

Example labels (coarse grained):

persons PER

locations LOC

organizations ORG

names NAME

other MISC
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Rule-based approaches

A collection of rules to detect entities

High precision vs. low recall

Interpretable

Time consuming to build and domain knowledge is needed

(Fabio Ciravegna, University of Sheffield)

Viktor Hangya (CIS) Neural Networks for Named Entity Recognition WS 2019-2020 · 5



Classification-based approaches

Given input segment, train classifier to tell:

Is this segment a Named Entity ?

Give the corresponding Tag

Classification task:

Trump attacks BMW and Mercedes

Is Trump a named entity ?

Yes, it is a person (PER)

Desired outputs:

Trump PER attacks BMW ORG and Mercedes ORG

U.N. ORG official Ekeus PER heads for Baghdad LOC
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Labeled data

Example annotations (CoNLL-2003):

Surface Tag

U.N. I-ORG
official O
Ekeus I-PER
heads O
for O
Baghdad I-LOC
. O

(Collobert et al., 2011)
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Classification-based approaches

Classifier combination with engineered features (Florian et al., 2003)
I Manually engineer features

F words
F POS tags
F prefixes and suffixes
F large (external) gazetteer

I 88.76 F1

Semi-supervised learning with linear models (Ando and Zhang, 2005)
I Train linear model on annotated data
I Add non-annotated data
I 89.31 F1
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Classification-based approaches

Differences to rule-based:
I Feature sets vs. rules
I Less domain knowledge is needed
I Faster to adapt systems
I Annotated data is needed

Next: neural networks
I even less manual work
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Feedforward Neural
Networks: Recap
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Motivation

x1

x2

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that

→ Through composition of non-linear functions
→ Learn relevant features from (almost) raw text

→ No need for manual feature engineering

→ learned by network
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Feedforward Neural Network
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input: X hidden: H output: h(X)

Computation of hidden layer H:

A1 = σ(X ·Θ1)

A2 = σ(X ·Θ2)

B0 = 1 (bias term)

Computation of output unit h(X):

h(X ) = σ(H ·Θ3)
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Non-linear activation function

The sigmoid function σ(Z ) is often used

h(x)

1
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Learning features from raw input

(Lee et al., 2009)
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Feedforward neural network

Trump attacks BMW and Mercedes

Binray NER task: Is the segment from position 1 to 2 a Named Entity?

Neural network: h(X ) = σ(H ·Θn), with:

H =


B0 = 1

A1 = σ(X ·Θ1)
A2 = σ(X ·Θ2)

· · ·
Aj = σ(X ·Θj)



Prediction: If h(X ) > 0.5, yes. Otherwise, no.
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Feedforward Neural Network
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input hidden output

If weights are all random output will be random

→ Predictions will be bad

→ Get the right weights
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Getting the right weights

Training: Find weight matrices U = (Θ1, Θ2) and V = Θ3 such that h(X )
is the correct answer as many times as possible.

→ Given a set T of training examples t1, · · · tn with correct labels yi,
find U = (Θ1, Θ2) and V = Θ3 such that h(X ) = yi for as many ti
as possible.

→ Computation of h(X ) called forward propagation

→ U = (Θ1, Θ2) and V = Θ3 with error back propagation
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Multi-class classification

More than two labels

Instead of “yes” and “no”, predict ci ∈ C = {c1, · · · , ck}
NER: Is this segment a location, name, person ...

Use k output units, where k is number of classes
I Output layer instead of unit
I Use softmax to obtain value between 0 and 1 for each class
I Highest value is right class
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Multi-class classification
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Neural Networks for NER
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Feedforward Neural Network for NER

Training example: Trump attacks BMW (ORG) and Mercedes

Neural network input:

Look at word window around BMW

→ Trump−2 attacks−1 BMW and1 Mercedes2

→ each word wi is represented as one-hot vector

→ wi =
[
0, 1, 0, 0, ..., 0

]
Neural network training:

Predict corresponding label (forward propagation)

→ should be organization (ORG)

Train weights by backpropagating error
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Feedforward Neural Network for NER

w1

w2

w3

w4

A1

· · ·

A100

Z1

· · ·

ZK

h(X )

input U hidden V output

Input: one-hot word representations wi

Hidden layer: learns to detect higher level features
I e.g.: at ... pm

Output: predicted label
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Weight training

Training: Find weight matrices U and V such that h(X ) is the correct
answer as many times as possible.

→ Given a set T of training examples t1, · · · tn with correct labels yi,
find U and V such that h(X ) = yi for as many ti as possible.

→ Computation of h(X ) with forward propagation

→ U and V with error back propagation
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Backpropagation

Goal of training: adjust weights such that correct label is predicted

→ Error between correct label and prediction is minimal

Compute error at output:

Compare
I output: h(x i ) =

[
0.01, 0.1, 0.001, 0.95, ..., 0.01

]
I correct label: y i =

[
0, 0, 1, 0, ..., 0

]
E = 1

2

n∑
j=1

(y ij − h(x i )j)
2 (mean squared)

Search influence of weight on error:
∂E
∂wij

wij : single weight in weight matrix
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Backpropagation

LT1

LT2

LT3

LT4

A1

· · ·

A100

∂E
∂wij

Z1

· · ·

ZK

E(h(X ), y i )

input U hidden V output

Backpropagation:

→ E needs to go through output neuron.

→ Chain rule: ∂E
∂wij

= ∂E
∂Oj

∂Oj

∂Zj

∂Zj

∂wij
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Weight training

Gradient descent: for each batch of training examples

1 Forward propagation to get predictions
2 Backpropagation of error

I Gives gradient of E given input

3 Modify weights

4 Goto 1 until convergence
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Outcome

Hidden layer is able to learn higher level features of words
I Cars are produced at BMW

Not enough to get good performance

A simple index does not carry much information about a given word
I wBMW =

[
1, 0, 0, 0, ..., 0

]
I wMercedes =

[
0, 1, 0, 0, ..., 0

]
I whappiness =

[
0, 0, 1, 0, ..., 0

]
This would be better

I wBMW =
[
1, 0, 0, 0, ..., 0

]
I wMercedes =

[
1, 0, 0, 0, ..., 0

]
I whappiness =

[
0, 0, 1, 0, ..., 0

]
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Lookup (Embedding) Layer

Learn features for words as well

Similar words have similar features

Lookup table layer:
I embeds each one-hot encoded word wi

I to a feature vector LTi

I wBMW =
[
0.5, 0.5, 0.0, 0.0, ..., 0.0

]
I wMercedes =

[
0.5, 0.0, 0.5, 0.0, ..., 0.0

]
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Dot product with (trained) weight vector

W = {the,cat,on,table,chair}

wtable =


0
0
0
1
0

 C =

0.02 0.1 0.05 0.03 0.01
0.15 0.2 0.01 0.02 0.11
0.03 0.1 0.04 0.04 0.12



LTtable = wtable · CT =

0.03
0.02
0.04


Words get mapped to lower dimension
→ Hyperparameter to be set
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Feedforward Neural Network with Lookup Table

w1

w2

w3

w4

LT1

LT2

LT3

LT4

A1

· · ·

A100

Z1

· · ·

ZK

word C word feats U hidden V output

C is shared!
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Dot product with (initial) weight vector

W = {the,cat,on,table,chair}

wtable =


0
0
0
1
0

 C =

0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01



LTtable = wtable · CT =

0.01
0.01
0.01


Feature vectors same for all words.
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Weight training

Training: Find weight matrices C , U and V such that h(X ) is the correct
answer as many times as possible.

→ Given a set T of training examples t1, · · · tn with correct labels yi,
find C , U and V such that h(X ) = yi for as many ti as possible.

→ Computation of h(X ) with forward propagation

→ C , U and V with error back propagation

→ Lookup matrix C trained with NER training data

→ Word feature vectors are trained towards NER
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Results

Classifier combination with engineered features (Florian et al. 2003)

88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)

89.31 F1

Feedforward Neural Networks for NER (Collobert et al., 2011):

With raw words 81.74

Viktor Hangya (CIS) Neural Networks for Named Entity Recognition WS 2019-2020 · 33



NER trained word embeddings

Word embeddings trained on NER task

(Collobert et al. 2011)

→ Small amount of annotated data.

Closest words to France
I Persuade
I Faw
I Blackstock

Closest words to XBOX
I Decadent
I Divo
I Versus
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Adding Pre-trained Word
Embeddings
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Word Embeddings

Representation of words in vector space

poor

rich

silver

disease

society
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Word Embeddings

Similar words are close to each other

→ Similarity is the cosine of the angle between two word vectors

poor

rich

silver

disease

society
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Learning word embeddings

Count-based methods:

Compute cooccurrence statistics

Learn high-dimensional representation

Map sparse high-dimensional vectors to small dense representation

Matrix factorization approaches: SVD

Neural networks:

Predict a word from its neighbors

Learn (small) embedding vectors

Word2Vec: CBOW and skipgram Mikolov et al. (2013)

Language Modeling Task

ELMo, BERT Peters et al. (2018); Devlin et al. (2018)
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Learning word embeddings with CBOW

Training example: Trump attacks BMW and Mercedes

wt−2

wt−1

wt+1

wt+2

LTt−2

LTt−1

LTt+1

LTt+2

∑
wt

word C word feats U
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Learning word embeddings with skip-gram

Training example: Trump attacks BMW and Mercedes

wt−2

wt−1

wt+1

wt+2

Ltwt

U word feats C word
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Learning word embeddings with Language Modeling

Training example: Trump attacks BMW and Mercedes

wt−4

wt−3

wt−2

wt−1

LTt−4

LTt−3

LTt−2

LTt−1

A1 wt

word C word feats U V
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Word Embeddings for NER

Train word embeddings in advance:

→ Use large amounts of non-annotated data
→ No need for NER training data
→ Labels are words wt

Replace lookup table C (randomly initialized) with C (pre-trained)
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NER trained word embeddings

Word embeddings trained on NER task

(Collobert et al. 2011)

→ Small amount of annotated data.

Closest words to France
I Persuade
I Faw
I Blackstock

Closest words to XBOX
I Decadent
I Divo
I Versus
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NER trained word embeddings

Pre-trained word embeddings trained
→ Large amount of non-annotated data.

Closest words to France
I Austria
I Belgium
I Germany

Closest words to XBOX
I Amiga
I Playstation
I MSX
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Results

Classifier combination with engineered features (Florian et al. 2003)

88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)

89.31 F1

Feedforward Neural Networks for NER (Collobert et al. 2011):

With raw words 81.74

With pre-trained word embeddings 88.67

Using a gazetteer 89.59
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Results

Pre-trained word embeddings yield significant improvements

Hidden layer is able to learn higher level features of words
I Cars are produced at BMW

Word features:
I wBMW =

[
0.5, 0.5, 0.0, 0.0, ..., 0.0

]
I wMercedes =

[
0.5, 0.0, 0.5, 0.0, ..., 0.0

]
I whappiness =

[
0.0, 0.0, 0.0, 1.0, ..., 0.0

]
It also helps the problem of out-of-vocabulary words

The power is in exploiting large unlabeled data

insted of relying only on small labeled data
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Sequence Tagging with RNNs and CRFs
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NER as sequence tagging

Sequential input
I Classification approaches (linear or NN) looked at a window around the

input word
I Limitation of window size

F too small → loosing information
F too large → noise or data scarcity

Let’s have a party at JFK

I Read words sequentially and keep relevant information only

Sequence of tags
I IOB format: beginning and inside tags
I Some tags shouldn’t follow each other
I Output labels sequentially word-by-word

The seminar starts tomorrow 4pm
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Recurrent Neural Network (RNN)

(Huang et al., 2015)

Reads the input sequentially
At time step t:

I ht = f (ht−1, xt ; θ1)
F e.g. ht = σ(ht−1 ∗ U + xt ∗ V )

I ot = g(ht ; θ2)
F e.g. ot = σ(ht ∗W )

Parameters are shared for each time step

Multiple variations: LSTM, GRU, etc.
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RNNs for NER

(Huang et al., 2015)

Input: words

Lookup layer
I learn embeddings from scratch
I or used pre-trained embeddings

Probabilities of each NER tag

Example: I’m traveling to the EU
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Bidirectional RNNs

(Huang et al., 2015)

The EU is very far from the US

Read the input both from left-to-right and right-to-left

Concatenate the hidden states to get the output

I ot = g(
−→
ht |
←−
ht ; θ2)
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Conditional Random Fields (CRF)

(Huang et al., 2015)

Tag at time step t should be dependent on the RNN output at t and
the tag at t − 1 as well

CRF adds (soft) constrains on the final predicted tags ensuring they
are valid given previous tags

I Transition matrix Ti,j : probability of tag j given that previous tag was i
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CRF transition matrix
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RNN + CRF for NER

Prediction: tag sequence probability is calculated using RNN and
transition probabilities (Viterbi algorithm)
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Results

Classifier combination with engineered features (Florian et al. 2003)

88.76 F1

Semi-supervised learning with linear models (Ando and Zhang 2005)

89.31 F1

Feedforward Neural Networks for NER (Collobert et al. 2011):

With raw words 81.74

With pre-trained word embeddings 88.67

Using a gazetteer 89.59

BI-LSTM-CRF

90.10
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Bilingual Word Embeddings
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Bilingual transfer learning

For many low-resource languages we do not have enough training
data for NER

Use knowledge from resource rich langauages

Translate data to the target language
I Parallel data is needed for the translation system

Target language words are OOVs for a system trained on the source
language

I similarity of source and target words → bilingual word embeddings
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Bilingual Word Spaces

Representation of words in two languages in same semantic space:

→ Similar words are close to each other

→ Given by cosine

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
α
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Learning Bilingual Word Embeddings

Learn bilingual embeddings from parallel data

Hermann and Blunsom (2014), Gouws et al. (2015), Gouws and
Søgaard (2015), Duong et al. (2016)
Need for parallel data

Learn bilingual embeddings or lexicon from document-aligned data

Vulic and Moens (2015); Vulic and Korhonen (2016)
Need document-aligned data

Learn monolingual word embeddings and map using seed lexicon

Mikolov et al. (2013); Faruqui and Dyer (2014); Lazaridou et al. (2015)
Need seed lexicon
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Post-hoc mapping (with seed lexicon)

Learn monolingual word embeddings

Learn a linear mapping W

rich

poor

disease

silver

W

Silber

Reich

Gesellschaft

Krankheit
Arm
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Post-hoc mapping

Project source words into target space

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
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Post-hoc Mapping with seed lexicon

1 Train monolingual word embeddings (Word2vec) in English
I Need English monolingual data

2 Train monolingual word embeddings (Word2vec) in German
I Need German monolingual data

3 Learn mapping W using a seed lexicon
I Need a list of 5000 English words and their translation
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Learning W with Regression

(Conneau et al., 2017)

Regression (Mikolov et al. (2013))

W∗ = arg min
W

n∑
i

|| xiW− yi ||2

xi : embedding of i-th source (English) word in the seed lexicon.

yi : embedding of i-th target (German) word in the seed lexicon.
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Learning W with Ridge Regression

Regression (Mikolov et al. (2013))

W∗ = arg min
W

n∑
i

|| xiW− yi ||2

Predict projection y* by computing xiW

Compute squared error between y* and yi
I Correct translation ti given in seed lexicon
I Vector representation yi is given by embedding of ti

Find W such that squared error over training set is minimal
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Bilingual lexicon induction

Task to evaluate bilingual word embeddings intrinsically

Given a set of source words, find the corresponding translations:
I Given silver, find its vector in the BWE
I Retrieve the German word whose vector is closest (cosine distance)

poor

rich

silver
Silber

Reich

disease

Gesellschaft

Krankheit

society

Arm
α
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Bilingual lexicon induction with ridge regression

Data: WMT 2011 training data for English, Spanish, Czech
Seed: 5000 most frequent words translated with Google Translate
Test: 1000 next frequent words translated with Google Translate

→ Removed digits, punctuation and transliterations

Languages top-1 top-5

En-Es 33 % 51 %
Es-En 35 % 50 %
En-Cz 27 % 47 %
Cz-En 23 % 42 %

+ Es-En 53 % 80 %

→ with spanish google news
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NER Results

Use the bilingual word embeddings to initialize the lookup table in the
NER classifier

Ni et al. (2017)

Spanish:
I supervised: 80.6
I transfer learning: 57.4

Dutch:
I supervised: 82.3
I transfer learning: 60.3

German:
I supervised: 71.8
I transfer learning: 54.4
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Summary

Using neural networks for NER yields good results using (almost) raw
representations of words

Word embeddings can be learned automatically on large amounts of
non-annotated data

Giving pre-trained word embeddings as input to neural networks
improve end-to-end task

Bilingual word embeddings make it possible to transfer knowledge
from resource rich languages
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Thank you !
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