
Statistical Machine Translation 
Part IV – Log-Linear Models

Alexander Fraser

CIS, LMU München

Machine Translation SS 2023

Where we have been

• Solving a problem where we are predicting a
structured output:

– Problem definition

– Evaluation, i.e., how will we evaluate progress?

– Model

– Training = parameter estimation

• Still to come:

– Search (= decoding, for SMT)

Where we are going today

• The generative models we have seen so far are
good, but we can do better

– Switch to discriminative models (this will be defined

later)

– We will see that this frees us from the structure of the

generative model!

• We can concentrate on new knowledge sources

• Also, no more annoying open parameters

– Discriminative models are used practically everywhere
in NLP these days (including in deep learning
approaches)

Outline

• Recap: original phrase-based model

• Optimizing parameters

• Deriving the log-linear model

• Tuning the log-linear model

• Adding new features

Slide from Koehn 2008

Modified from Koehn 2008

d

Outline

• Recap

• Optimizing parameters

• Deriving the log-linear model

• Tuning the log-linear model

• Adding new features

Introduction

argmax P(e | f) = argmax P(f | e) P(e)

 e 	 	 e
a

• We have seen that using Bayes’ Rule we can
decompose the problem of maximizing P(e|f)

Basic phrase-based model

• We make the Viterbi assumption for alignment (not
summing over alignments, just taking the best one)

• We know how to implement P(f,a|e) using a phrase-
based translation model composed of a phrase-
generation model and a reordering model

• We know how to implement P(e) using a trigram model
and a length bonus

length(e)
LMDTM C (e)P (a)P e)|a(f,P

Example

Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1: |Tomorrow| |I| |will fly| |to Canada|

Hyp 2: |Tomorrow| |fly| |I| |to Canada|

• What do we expect the probabilities (or probability-like scores) to look like
qualitatively?

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6

What determines which hyp is better?

• Which hyp gets picked?

– Length bonus and trigram "like" hyp 1

– Reordering "likes" hyp 2

• If we optimize Z and C for best performance, we will pick hyp 1

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6

How to optimize Z and C?
• Take a new corpus “dev” (1000 sentences, with gold

standard references so we can score BLEU)

• Try out different parameters. [Take last C and Z printed].
How many runs?

Best = 0;

For (Z = 0; Z <= 1.0; Z += 0.1)

 	 For (C = 1.0; C <= 3.0; C += 0.1)

	 	 Hyp = run decoder(C,Z,dev)

If (BLEU(Hyp) > Best)

 Best = BLEU(Hyp)

 Print C and Z

Adding weights

• But what if we know that the language model is
really good; or really bad?

• We can take the probability output by this
model to an exponent

• If we set the exponent to a very large positive
number then we trust very much

– If we set the exponent to zero, we do not trust it at

all (probability is always 1, no matter what e is)

LMλ(e)PLM

(e)PLM

• Add a weight for each component

 (Note, omitting length bonus here, it will be back

soon; we’ll set C to 1 for now so it is gone)

LMDTM λλλ (e)P (a)P e)|a(f,P LMDTM

• To get a conditional probability, we will divide by
all possible strings e and all possible alignments
a

∑
=

a',e' LMDTM

LMDTM

)(e'P)(a'P)e'|a'(f,P
(e)P (a)P e)|a(f,P f)|aP(e,

LMDTM

LMDTM

λλλ

λλλ

• To solve the decoding problem we maximize
over e and a. But the term in the denominator
is constant!

LMDTM

LMDTM

LMDTM

λλλ

λλλ

λλλ

(e)P (a)P e)|a(f,P argmax

)(e'P)(a'P)e'|a'(f,P
(e)P (a)P e)|a(f,P

 argmax f)|aP(e,argmax

LMDTMae,

a',e' LMDTM

LMDTM
ae,ae,

=

=
∑

• Now let's add C back in and take the log (see
formulation in a couple of slides)

• We now have two problems

– Optimize Z and C and the three lambdas

– Exponentiation is slow

• Let’s solve this one first…

Log probabilities

• Convenient to work in log space

• Use log base 10 because it is easy for humans

• log(1)=0 because

• log(1/10)=-1 because

• log(1/100)=-2 because

• Log(a*b) = log(a)+log(b)

• Log(a^b) = b log(a)

1100 =

10/110 1 =−

100/110 2 =−

So let’s maximize the log

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax
LMDTM λλλ=

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax
LMDTM λλλ=

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=

))C log()(e)P log(

)(a)log(P)e)|a(f,Plog(argmax
length(e)

LM

DTM ae,

++

+=

LM

DTM

λ

λλ

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax
LMDTM λλλ=

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=

))C log()(e)P log(

)(a)log(P)e)|a(f,Plog(argmax
length(e)

LM

DTM ae,

++

+=

LM

DTM

λ

λλ

)) log((e))P log(

(a))log(Pe))|a(f,Plog(argmax
length(e)

LM

DTM ae,

Cλ

λλ

LM

DTM

++

+=

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax
LMDTM λλλ=

Let’s change the length bonus

)log(10 (e))P log(

(a))log(Pe))|a(f,Plog(argmax
length(e)

LM

DTM ae,

LBLM

DTM

λλ

λλ

++

+=

length(e) (e))P log(

(a))log(Pe))|a(f,Plog(argmax

LM

DTM ae,

LBLM

DTM

λλ
λλ

++

+=

We set C=10 and add a new lambda, then simplify

Length penalty

))(-length(e (e))P log(

(a))log(Pe))|a(f,Plog(argmax

LM

DTMae,

LPLM

DTM

λλ
λλ

++

+=

We like the values we work with to be zero or less
(like log probabilities)

We change from a length bonus to a length
penalty (LP)

But we know we want to encourage longer strings
so we expect that this lambda will be negative!

Reordering

))(-length(e (e))P log(

(-D(a))e))|a(f,Plog(argmax

LM

TMae,

LPLM

DTM

λλ
λλ

++

+=

Do the same thing for reordering. As we do more
jumps, “probability” should go down.

So use –D(a)

D(a) is the sum of the jump distances (4 for hyp 1
in our previous example)

Log-linear model

• So we now have a log-linear model with four
components, and four lambda weights

– The components are called feature functions

• Given f, e and/or a they generate a log probability value

• Or a value looking like a log probability (Reordering,

Length Penalty)

– Other names: features, sub-models

• This is a discriminative model, not a generative
model

Slide from Koehn 2008

Slide from Koehn 2008

Search for the log-linear model

– We’ve derived the log-linear model!

– Next time we will talk about how to find the

English string (and alignment) of maximum
probability

• For the old phrase-based model, the decoder needs to
multiply unweighted probabilities as it did before

• We only change it to sum (lambdas times log
probabilities), to maximize this:

))(-length(e (e))P log(

(-D(a))e))|(fPlog(argmax

LM

TMae,

LPLM

DTM

λλ
λλ
++

+=

Discriminative training problem:
optimizing lambda

• We are looking for the best lambda vector

– A lambda vector consists of lambda scalars (4 for our model right now)

• How do we get an optimal lambda vector?

• We can use nested for-loops as we did before for C and Z

– We need to try out a lot of values for the lambda scalars though, the
differences could be very subtle

– Many, many decoder runs; these take 10 minutes or longer each!

• At least we can reduce number of decoder runs

– Use n-best lists

Slide from Koehn 2008

Slide from Koehn 2008

Learning Task
Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1: |Tomorrow| |I| |will fly| |to Canada|

Hyp 2: |Tomorrow| |fly| |I| |to Canada|

Assume that Hyp 1 has a better BLEU score

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task
Suppose we start with an initial lambda vector: 1 1 1 -1

	 Then: hyp 1 has a log score of -2 (1/100 probability)

	 	 hyp 2 has a log score of -1 (1/10 probability)

This is poor! Hyp 2 will be selected

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task
We would like to find a vector like: 1 0.5 2 -1

 hyp 1 has a log score of -3

	 hyp 2 has a log score of -6

Hyp 1 is correctly selected!

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task

Sentence Hypothesis Phrase
Trans

Reordering Trigram LM Length
bonus

1 Hyp 1 -1 -4 -3 -6

1 Hyp 2 -1 0 -5 -5

2 Hyp 1 -2 0 -3 -3

2 Hyp 2 -3 0 -2 -3

N-best lists contain several sentences and hypotheses for each sentence

The lambda vector 1 0.5 2 -1 picks Hyp 1 in the first sentence, and Hyp 2

 in the second sentence.

Suppose sentence 2 Hyp 1 is better. Then choose a lambda like: 3 0.5 2 -1

It is easy to see that this does not change the ranking of the hypotheses

 in sentence 1.

N-best lists result in big savings

• Run the for-loops on a small collection of
hypotheses, do decoder runs only when you have
good settings

Initialize: start with empty hypothesis collection

LOOP:

– Run the decoder with current lambda vector and add n-best
list hypotheses to our collection

– Score collection of hypotheses with BLEU

– Use nested-for-loop to change individual lambda scalars in

vector to get better BLEU on collection

– End program if lambda vector did not change

• OK, so we know how to set the lambda vector
for our four feature functions

– This means depending on the task we might, for

instance, penalize reordering more or less

– This is determined automatically by the

performance on the dev corpus

• But what about new features?

New Feature Functions

• We can add new feature functions!

– Simply add a new term and an associated lambda

– Can be function of e, f and/or a

– Can be either log probability (e.g., Trigram), or just look like one (e.g.,

Length Penalty)

• These can be very complex features to very simple features

– Length penalty is simple

– Phrase translation is complex

– With right lambda settings they will trade-off against each other well!

New Feature Functions

• Features can overlap with one another!

– In a generative model we do a sequence of steps, no

overlapping allowed

– In Model 1, you can’t pick a generated word using two

probability distributions

• Note: Interpolation is not an answer here, would add the

optimization of the interpolation weight into EM

• Better to rework generative story if you must (this is difficult)

– With a log-linear model we can score the probability of a
phrase block using many different feature functions,
because the model is not generative

Slide from Koehn 2008

Revisiting discriminative training:
methods to adjust feature weights

• We will wind up with a lot of lambda scalars to
optimize

• But there are algorithms to deal with this that are
more efficient than nested for-loops

• In all cases, we have the same log-linear model

– The only difference is in how to optimize the lambdas

– We saw one way to do this already

• Using nested for-loops on n-best lists

– We will keep using n-best lists (but not nested for-loops)

Minimum Error Rate Training

– Maximize quality of top-ranked translation

• Similarity according to metric (BLEU)

• Implemented in Moses toolkit

Slide from Koehn 2008

MERT is like “un-nesting” the for-loops
StartLambda = 1 1 1 -1

LOOP:

BestBLEU[1..4] = 0

For (i = 1 to 4)

 TryLambda = StartLambda

	 For (L = 1.0; L <= 3.0; L += 0.1)

	 TryLambda[i] = L

	 	 Hyp = best_hyps_from_nbest_list(TryLambda)

If (BLEU(Hyp) > BestBLEU[i])

 BestBLEU[i] = BLEU(Hyp)

 BestLambda[i] = L

	 	

Then simply check BestBLEU[1..4] for the best score.

Suppose it is BestBLEU[2].

Set StartLambda[2] = BestLambda[2] and go to top of loop (until
you get no improvement).

However MERT is better than that

• We will not check discrete values (1.0, 1.1, …, 3.0)

• We will instead do an exact line minimization in one

pass through the n-best list

• Key observation is that varying just one weight

means:

– The score of each hypothesis (as we vary the weight) can be

viewed as a line

– For each sentence, we can look at the intercept points of

these lines to see where the hypothesis with the best
model score changes

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Minimum Error Rate Training 
[Och, ACL 2003]

• Maximize quality of top-ranked translation

• Similarity according to metric (BLEU)

• This approach only works with up to around 20
feature functions

• But very fast and easy to implement

• Implementation comes with Moses

Maximum Entropy  
[Och and Ney, ACL 2002]

– Match expectation of feature values of model and
reference translation

– Log-linear models are also sometimes called
Maximum Entropy models (when trained this way)

– Great for binary classification, very many
lightweight features

• Also is a convex optimization – no problems with local
maxima in the optimization

– Doesn‘t work well for SMT

Ordinal Regression  
[Chiang et al., NAACL 2009;  

many others previously]
– Separate k worst from the k best translations

• E.g., separate hypotheses with lowest BLEU from hypotheses with highest
BLEU

• Approximately maximizes the margin

• Support Vector machines do this non-approximately (but are too slow)

• Often done in an online fashion, one sentence at a time (i.e., original Chiang
approach)

• Very popular from about 2015 on

• Moses comes with Batch MIRA (not online), often works better than

MERT

• Related approach (also in Moses) is Pairwise Ranking Optimization

• Both approaches scale to thousands of feature functions

Conclusion

• We have defined log-linear models

• And shown how to automatically tune them

• Log-linear models allow us to use any feature function

that our decoder can score

– Must be able to score a partial hypothesis extended from left

to right (decoding/search lecture)

• Log-linear models are often used

• Also heavily used in non-structured prediction tasks like text

classification (multiclass)

• Very common model for high performance NLP (but neural

networks are used even more now)

• Thanks for your attention!

Slide from Koehn 2008

