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Where we have been

• Solving a problem where we are predicting a 
structured output:

– Problem definition

– Evaluation, i.e., how will we evaluate progress?

– Model

– Training  = parameter estimation


• Still to come:

– Search (= decoding, for SMT)



Where we are going today

• The generative models we have seen so far are 
good, but we can do better

– Switch to discriminative models (this will be defined 

later)

– We will see that this frees us from the structure of the 

generative model!

• We can concentrate on new knowledge sources

• Also, no more annoying open parameters


– Discriminative models are used practically everywhere 
in NLP these days (including in deep learning 
approaches)



Outline

• Recap: original phrase-based model

• Optimizing parameters

• Deriving the log-linear model

• Tuning the log-linear model

• Adding new features
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Introduction

argmax  P( e | f )  =   argmax  P( f | e )  P( e ) 

     e 	 	                    e
a

• We have seen that using Bayes’ Rule we can 
decompose the problem of maximizing P(e|f)




Basic phrase-based model

• We make the Viterbi assumption for alignment (not 
summing over alignments, just taking the best one)                                       


• We know how to implement P(f,a|e) using a phrase-
based translation model composed of a phrase-
generation model and a reordering model


• We know how to implement P(e) using a trigram model 
and a length bonus

length(e)
LMDTM C  (e)P  (a)P  e)|a(f,P



Example

Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1:  |Tomorrow| |I| |will fly| |to Canada|

Hyp 2:  |Tomorrow| |fly| |I| |to Canada|


• What do we expect the probabilities (or probability-like scores) to look like 
qualitatively?

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6



What determines which hyp is better?

• Which hyp gets picked?

– Length bonus and trigram "like" hyp 1

– Reordering "likes" hyp 2


• If we optimize Z and C for best performance, we will pick hyp 1

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6



How to optimize Z and C?
• Take a new corpus “dev” (1000 sentences, with gold 

standard references so we can score BLEU)


• Try out different parameters. [Take last C and Z printed]. 
How many runs?


Best = 0;

For (Z = 0; Z <= 1.0; Z += 0.1)

 	 For (C = 1.0; C <= 3.0; C += 0.1)

	 	 Hyp = run decoder(C,Z,dev)    


If (BLEU(Hyp) > Best)

   Best = BLEU(Hyp)

   Print C and Z



Adding weights

• But what if we know that the language model is 
really good; or really bad?


• We can take the probability output by this 
model to an exponent


• If we set the exponent to a very large positive 
number then we trust           very much

– If we set the exponent to zero, we do not trust it at 

all (probability is always 1, no matter what e is)

LMλ(e)PLM

(e)PLM



• Add a weight for each component

   (Note, omitting length bonus here, it will be back 

soon; we’ll set C to 1 for now so it is gone)

LMDTM λλλ (e)P (a)P e)|a(f,P LMDTM



• To get a conditional probability, we will divide by 
all possible strings e and all possible alignments 
a

∑
=

a',e' LMDTM

LMDTM
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• To solve the decoding problem we maximize 
over e and a. But the term in the denominator 
is constant!

LMDTM

LMDTM

LMDTM

λλλ

λλλ

λλλ
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• Now let's add C back in and take the log (see 
formulation in a couple of slides)


• We now have two problems

– Optimize Z and C and the three lambdas

– Exponentiation is slow


• Let’s solve this one first…



Log probabilities

• Convenient to work in log space

• Use log base 10 because it is easy for humans

• log(1)=0   because 

• log(1/10)=-1   because 

• log(1/100)=-2   because

• Log(a*b) = log(a)+log(b)  

• Log(a^b) = b log(a)

1100 =

10/110 1 =−

100/110 2 =−



So let’s maximize the log

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax             

 f)|aP(e,argmax
LMDTM λλλ=



So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=

length(e)
LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax             

 f)|aP(e,argmax
LMDTM λλλ=



So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=

))C log(  )(e)P log(     

)(a)log(P)e)|a(f,Plog(argmax
length(e)
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So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)
LMDTM ae,

LMDTM λλλ=
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Let’s change the length bonus

)log(10  (e))P log(                  

(a))log(Pe))|a(f,Plog(argmax
length(e)

LM

DTM ae,
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DTM
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λλ

++

+=

We set C=10 and add a new lambda, then simplify



Length penalty

))(-length(e  (e))P log(                      

(a))log(Pe))|a(f,Plog( argmax

LM

DTMae,

LPLM

DTM

λλ
λλ

++

+=

We like the values we work with to be zero or less 
(like log probabilities)


We change from a length bonus to a length 
penalty (LP)


But we know we want to encourage longer strings 
so we expect that this lambda will be negative!



Reordering

))(-length(e  (e))P log(                      

(-D(a))e))|a(f,Plog( argmax

LM

TMae,
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λλ
λλ

++

+=

Do the same thing for reordering. As we do more 
jumps, “probability” should go down.   


So use –D(a)


D(a) is the sum of the jump distances (4 for hyp 1 
in our previous example)



Log-linear model

• So we now have a log-linear model with four 
components, and four lambda weights

– The components are called feature functions


• Given f, e and/or a they generate a log probability value 

• Or a value looking like a log probability (Reordering, 

Length Penalty)

– Other names: features, sub-models


• This is a discriminative model, not a generative 
model
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Search for the log-linear model

– We’ve derived the log-linear model!

– Next time we will talk about how to find the 

English string (and alignment) of maximum 
probability


• For the old phrase-based model, the decoder needs to 
multiply unweighted probabilities as it did before


• We only change it to sum (lambdas times log 
probabilities), to maximize this:

))(-length(e  (e))P log(                      

(-D(a))e))|(fPlog( argmax

LM

TMae,

LPLM

DTM

λλ
λλ
++

+=



Discriminative training problem: 
optimizing lambda

• We are looking for the best lambda vector

– A lambda vector consists of lambda scalars (4 for our model right now)


• How do we get an optimal lambda vector?

• We can use nested for-loops as we did before for C and Z


– We need to try out a lot of values for the lambda scalars though, the 
differences could be very subtle


– Many, many decoder runs; these take 10 minutes or longer each!


• At least we can reduce number of decoder runs

– Use n-best lists



Slide from Koehn 2008



Slide from Koehn 2008



Learning Task
Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1: |Tomorrow| |I| |will fly| |to Canada|

Hyp 2:  |Tomorrow| |fly| |I| |to Canada|


Assume that Hyp 1 has a better BLEU score

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1  0 -5 -5



Learning Task
Suppose we start with an initial lambda vector: 1 1 1 -1

	 Then: hyp 1 has a log score of -2 (1/100 probability)

	 	    hyp 2 has a log score of -1 (1/10 probability)


This is poor! Hyp 2 will be selected

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1  0 -5 -5



Learning Task
We would like to find a vector like: 1 0.5 2 -1

                hyp 1 has a log score of -3

	            hyp 2 has a log score of -6


Hyp 1 is correctly selected!

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1  0 -5 -5



Learning Task

Sentence Hypothesis Phrase 
Trans

Reordering Trigram LM Length 
bonus

1 Hyp 1 -1 -4 -3 -6

1 Hyp 2 -1  0 -5 -5

2 Hyp 1 -2 0 -3 -3

2 Hyp 2 -3 0 -2 -3

N-best lists contain several sentences and hypotheses for each sentence


The lambda vector 1 0.5 2 -1 picks Hyp 1 in the first sentence, and Hyp 2 

    in the second sentence. 


Suppose sentence 2 Hyp 1 is better. Then choose a lambda like: 3 0.5 2 -1


It is easy to see that this does not change the ranking of the hypotheses 

   in sentence 1.



N-best lists result in big savings

• Run the for-loops on a small collection of 
hypotheses, do decoder runs only when you have 
good settings


Initialize: start with empty hypothesis collection

LOOP:


– Run the decoder with current lambda vector and add n-best 
list hypotheses to our collection


– Score collection of hypotheses with BLEU

– Use nested-for-loop to change individual lambda scalars in 

vector to get better BLEU on collection

– End program if lambda vector did not change



• OK, so we know how to set the lambda vector 
for our four feature functions

– This means depending on the task we might, for 

instance, penalize reordering more or less

– This is determined automatically by the 

performance on the dev corpus


• But what about new features?



New Feature Functions

• We can add new feature functions!

– Simply add a new term and an associated lambda

– Can be function of e, f and/or a 

– Can be either log probability (e.g., Trigram), or just look like one (e.g., 

Length Penalty)


• These can be very complex features to very simple features

– Length penalty is simple

– Phrase translation is complex

– With right lambda settings they will trade-off against each other well!



New Feature Functions

• Features can overlap with one another!

– In a generative model we do a sequence of steps, no 

overlapping allowed

– In Model 1, you can’t pick a generated word using two 

probability distributions

• Note: Interpolation is not an answer here, would add the 

optimization of the interpolation weight into EM

• Better to rework generative story if you must (this is difficult)


– With a log-linear model we can score the probability of a 
phrase block using many different feature functions, 
because the model is not generative
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Revisiting discriminative training: 
methods to adjust feature weights

• We will wind up with a lot of lambda scalars to 
optimize


• But there are algorithms to deal with this that are 
more efficient than nested for-loops


• In all cases, we have the same log-linear model

– The only difference is in how to optimize the lambdas

– We saw one way to do this already


• Using nested for-loops on n-best lists

– We will keep using n-best lists (but not nested for-loops)



Minimum Error Rate Training

– Maximize quality of top-ranked translation


• Similarity according to metric (BLEU)

• Implemented in Moses toolkit



Slide from Koehn 2008



MERT is like “un-nesting” the for-loops
StartLambda = 1 1 1 -1

LOOP:

BestBLEU[1..4] = 0

For (i = 1 to 4)

  TryLambda = StartLambda

	 For (L = 1.0; L <= 3.0; L += 0.1)

	     TryLambda[i] = L

	 	 Hyp = best_hyps_from_nbest_list(TryLambda)    


If (BLEU(Hyp) > BestBLEU[i])

   BestBLEU[i] = BLEU(Hyp)

   BestLambda[i] = L

	 	

Then simply check BestBLEU[1..4] for the best score. 


Suppose it is BestBLEU[2]. 


Set StartLambda[2] = BestLambda[2] and go to top of loop (until 
you get no improvement).



However MERT is better than that

• We will not check discrete values (1.0, 1.1, …, 3.0)

• We will instead do an exact line minimization in one 

pass through the n-best list

• Key observation is that varying just one weight 

means:

– The score of each hypothesis (as we vary the weight) can be 

viewed as a line

– For each sentence, we can look at the intercept points of 

these lines to see where the hypothesis with the best 
model score changes
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Minimum Error Rate Training 
[Och, ACL 2003]

• Maximize quality of top-ranked translation

• Similarity according to metric (BLEU)


• This approach only works with up to around 20 
feature functions 


• But very fast and easy to implement

• Implementation comes with Moses



Maximum Entropy  
[Och and Ney, ACL 2002]

– Match expectation of feature values of model and 
reference translation


– Log-linear models are also sometimes called 
Maximum Entropy models (when trained this way)


– Great for binary classification, very many 
lightweight features


• Also is a convex optimization – no problems with local 
maxima in the optimization


– Doesn‘t work well for SMT



Ordinal Regression  
[Chiang et al., NAACL 2009;  

many others previously]
– Separate k worst from the k best translations


• E.g., separate hypotheses with lowest BLEU from hypotheses with highest 
BLEU


• Approximately maximizes the margin

• Support Vector machines do this non-approximately (but are too slow)


• Often done in an online fashion, one sentence at a time (i.e., original Chiang 
approach)


• Very popular from about 2015 on

• Moses comes with Batch MIRA (not online), often works better than 

MERT

• Related approach (also in Moses) is Pairwise Ranking Optimization

• Both approaches scale to thousands of feature functions



Conclusion

• We have defined log-linear models

• And shown how to automatically tune them

• Log-linear models allow us to use any feature function 

that our decoder can score

– Must be able to score a partial hypothesis extended from left 

to right (decoding/search lecture)


• Log-linear models are often used

• Also heavily used in non-structured prediction tasks like text 

classification (multiclass)

• Very common model for high performance NLP (but neural 

networks are used even more now)



• Thanks for your attention!
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