Machine Translation

Lecture 6 — Linear Models (Basic Machine Learning)

CIS, LMU Munchen
Summer Semester 2023

Prof. Dr. Alexander Fraser, CIS

Plan

Today: a lecture on linear models (basic machine learning)
* This is useful background for non-linear models (e.g., as used in
deep learning approaches)

Time allowing, I'll talk about some work of ours integrating linear
models into Moses

Starting next time, we will cover cover word embeddings, non-
linear models, recurrent neural networks, tfransformers, neural
machine translation, etc

Basic Machine Learning (Classification)

* I'm going to start by presenting a very brief
review of decision trees
* |'ll also briefly discuss overfitting
* Then l'll talk about linear models, which

were the workhorse of discriminative
classification most used in NLP until recently

* The example | am repeatedly using here is
the CMU seminars task, a standard
nformation Exiraction task

* | will explain this task in a few slides

Decision Tree Representation for ‘Play Tennise'’

Sunny

Humidity

/\

High Normal

/ \

No Yes

Outlook

Overcast

Yes

Strong

Rain

™~

Wind

/\

/

No

Weak

> |nternal node

~ test an attribute
> Branch

~ attribute value
> Leaf

~ classification
result

Slide from A. Kaban

When is It usefule

JdMedical diagnosis
JEquipment diagnosis
JCredit risk analysis
detc

Slide from A. Kaban

Decision Trees vs. Linear Models

* Decision Trees are an intuitive way 1o
learn classifiers from data
* They fit the training data well

* With heavy pruning, you can control
overfitting

* NLP practitioners often use linear
models instead

Decision Trees

* |'ll first talk about encoding sets of rules
IN a decision tree

* Then l'll go on to linear models

Rule Sets as Decision Trees

* Decision trees are quite powerful

* |TIs easy to see that complex rules can
be encoded as decision trees

 For instance, let's look at border
detection in CMU seminars...

CMU Seminars - Example

<0.24.4.93.20.59.10.jgc+@NL.CS.CMU.EDU (Jaime Carbonell).0>
Type:. cmu.cs.proj.mt

Topic: <speaker>Nagao</speaker> Talk

Dates: 26-Apr-93

Time: <stime>10:00</stime> - <etime>11:00 AM</etime>

PostedBy: jgc+ on 24-Apr-93 at 20:59 from NL.CS.CMU.EDU (Jaime
Carbonell)

Abstract:

<paragraph><sentence>This Monday, 4/26, <speaker>Prof. Makoto
Nagao</speaker> will give a seminar in the <location>CMT red
conference room</location> <stime>10</stime>-<etime>11am</etime>
on recent MT research results</sentence>.</paragraph>

... the Seminar at <stime> 4 pm will ...

Dep.

Word Lemma Capitalization SemCat POS
-3 the the lowercase Art
-2 Seminar seminar uppercase Noun
-1 at aft lowercase Prep stime
+1 4 4 lowercase Digit
+2 pm pm lowercase timeid Other
+3 will will lowercase Verb

Example modified from Ciravegna 2009

... the Seminar at <stime> 4 pm will ...

Dep.

Word Lemma Capitalization SemCat POS
-3
-2
-1 at stime
+1] Digit
+2 timeid
+3

Example modified from Ciravegna 2009

A Path In the Decision Tree

The tree will check if the token to the left of
the possible start position has "at" as a
emmao

Then check if the token after the possible
start position is a Digit

Then check the second token after the
start position is a fimeid ("am”, "pm", etc)

If you follow this path at a particular
location in the text, then the decision
should be to insert a <stime>

Linear Models

However, In practice decision trees are
not used so often in NLP

Instead, linear models are used
Let me first present linear models

Then | will compare linear models and
decision frees

Binary Classification

I'm going to first discuss linear models for
binary classification, using binary features

We'll take the same scenario as before

Our classifier is frying to decide whether we
have a <stime> tag or not at the current
position (between two words in an email)

The first thing we will do is encode the
context at this position info a feature vector

Feature Vector

 Each feature is true or false, and has a
position In the feature vector

* The feature vector is typically sparse,
meaning it iIs mostly zeros (i.e., false)

* The feature vector represents the full
feature space. For instance, consider...

... the Seminar at <stime> 4 pm will ...

Dep.

Word Lemma Capitalization SemCat POS
-3 the the lowercase Art
-2 Seminar seminar uppercase Noun
-1 at aft lowercase Prep stime
+1 4 4 lowercase Digit
+2 pm pm lowercase timeid Other
+3 will will lowercase Verb

Example modified from Ciravegna 2009

-3
-2
-1
+1
+2

+3

-3_lemma_the
-2_lemma_Seminar
-1 _lemma_at
+1_lemma_4
+2_lemma_pm

+3 lemma_will

... the Seminar at <stime> 4 pm will ...

Dep.

Lemma Capitalization SemCat POS

Word

the

Seminar

at

4

pm

will

the lowercase

seminar uppercase

at lowercase
4 lowercase
pm lowercase
will lowercase

tfimeid

Art

Noun

Prep stime

Digit

Other

Verb

Example modified from Ciravegna 2009

Our features represent this table using binary variables
For instance, consider the lemma column
Most features will be false (false = off = 0)
The lemma features that will be on (true = on = 1) are:

Classification

* To classity we will take the dot product of
the feature vector with a learned weight
vector

* We will say that the class is true (i.e., we
should insert a <stime> here) it the dot
oroduct is > 0, and false otherwise

* Because we might want to shift the

decision boundary, we add a feature that
IS always frue

* This is called the bias

* By weighting the bias, we can shift where we
make the decision (see next slide)

Feature Vector

 We might use a feature vector like this:
(this example is simplified — really we'd have all features for all positions)

Bias term
... (say, -3_lemma_giraffe)
-3 lemma_the

-2 lemma_Seminar
-1 lemma_at
+1 lemma 4

+1_Digit
+2_timeid

Weight Vector

Now we'd like the dot product to be > 0 if we
should insert a <stime> tag

To encode the rule we looked at before we
have three features that we want to have a
positive weight

e -1 lemma_at

« +1_Digit

e +2 timeid

We can give them weights of |

Their sum will be three

To make sure that we only classity it all three
weights are on, let's set the weight on the bias
term to -2

Dot Product - |

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2_timeid

— — OO0 —- 00000 Oo0o

N

To compute
the dot
product first
take the
product of
each row, and
then sum these

Dot Product - i

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2_timeid

— — OO0 —- 00000 Oo0o

N

1*-2
0*0
1*0
0*0
1*0
0*0
0*0
1%]
1*0
0*0
1*]
1%]

Learning the Weight Vector

The general learning task is simply to find a
good weight vectorl!

* This is sometimes also called "training”

Basic intuition: you can check weight vector
candidates 1o see how well they classify the
training data

. Be;TJrer weights vectors get more of the training data

g

So we need some way to make (smart)
changes 1o the weight vector

. Ijhe’r goal is fo make better decisions on the training

ara

| will talk more about this later

Feature Extraction

* We run feature extraction to get the feafure
vectors for each position in the text

* We typically use a text representation to
represent frue values (which are sparse)

* Often we define feature templates which
describe the feature to be extracted and give
the name of the feature (i.e., -1_lemma_ XXX

-3_lemma_the -2_lemma_Seminar -1_lemma_at +1_lemma_4 +1_Digit +2_timeid STIME

-3_lemma_Seminar -2_lemma_at -1_lemma_4 -1_Digit +1_timeid +2_lemma_ will NONE

Training vs. Testing

* When fraining the system, we have gold
standard labels (see previous slide)

* When testing the system on new data, we
have no gold standard
* We run the same feature extraction first
* Then we take the dot product with the weight

vector to get a classification decision

* Finally, we have to go back to the original
text to write the <stime> tags into the
correct positions

Summary so far

So we've seen fraining and testing

We have an idea about train error and test
error (key concepfs!)
We are aware of the problem of overfitting

* And we know what overfitting means in terms
of train error and test error!

Now let's compare decision trees and
inear models

Linear models are weaker

Linear models are weaker than decision
tfrees

* This means they can't express the same richness
of decisions as decision trees can (if both have
access to the same features)

It is easy to see this by extending our
example

Recall that we have a weight vector
encoding our rule (see next slide)

Let's Take another reasonable rule

... the Seminar at <stime> 4 pm will ...

Dep.

Word Lemma Capitalization SemCat POS
-3 the the lowercase Art
-2 Seminar seminar uppercase Noun
-1 at aft lowercase Prep stime
+1 4 4 lowercase Digit
+2 pm pm lowercase timeid Other
+3 will will lowercase Verb

Example modified from Ciravegna 2009

... the Seminar at <stime> 4 pm will ...

Dep.

Word Lemma Capitalization SemCat POS
-3
-2
-1 at stime
+1] Digit
+2 timeid
+3

Example modified from Ciravegna 2009

The rule we'd like to learn is that if we have
the features:

-2_lemma_seminar

-1 lemma_at

+1_Digit

We should insert a <stime>

This is quite a reasonable rule, it letfs us
correctly cover the new sentence:

"The Seminar at 3 will be given by ..."
(there is no timeid like "pm" herel)
Let's modity the weight vector

Adding the second rule

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2_timeid

— — OO0 —- 00 —00O0

N

* Left's first verity that both rules work with
this weight vector

* But does anyone see any issues heree

How many rulese

If we look back at the vector, we see that we have
actually encoded quite a number of rules

* Any combination of three features with ones will be sufficient
so that we have a <stime>

* This might be good (i.e., it might generalize well to other
examples). Or it might not.
But what is definitely frue is that it would be easy to
create a decision tree that only encodes exactly our two
rules!

This should give you an intuition as to how linear models
are weaker than decision trees

Linear models are used heavily in NLP exactly because
they are weaker, since being weaker means they have
less problems with overfitting

* This is particularly important in NLP problems because often NLP
researchers like to use a very large number of features (which
might lead to really huge decision trees)

How can we get this power in linear models?

* Change the featfures!

 Forinstance, we can create combinations of
our old features as new features

* For instance, clearly if we have:
* One feature to encode our first rule

 Another feature to encode our second rule
* And we set the bias 1o 0

* We now get the same as the decision free

« Sometimes these new compound features
would be referred to as frigrams (they each
combine three basic features)

Feature Selection

* A task which includes automatically
finding such new compound features is
called feature selection

* This is built into some machine learning
toolkits

* Or you can implement it yourself by trying
out feature combinations and checking
the training error

* Use human infuition to check a small number
of combinations

* Or do it automatically, using a scripf

better score on the training data (these all fit our examplel)

N

— — OO0 —-— 00 —00O0

Training

Training is automatically adjusting the weight vector so as to better
fit the training corpus! Intuition: make small adjustments to get a

-2.01
0.04
0.0004

1.1

-1.99
0.04
0.002
0
1.101
0

0
0.9111
0

0
0.892

| 0.91

-2.01
0.043
0.0003

1.1

Perceptron Update |

One way to do this is using a so-called perceptron

Algorithm:

Read the training examples one at a time

For each training example, decide how to update the weight vector
The perceptron update rule says:

If a training example is classified correctly:
Do nothing (because the current weight vector is fine)
If a training example is classified incorrectly:

* Adjust the weight of every active feature by a small amount towards the desired
decision

So that the example will score a bit better next time it is observed

Intuition: we hope that by making many small changes

The weights on important features increase consistently to the desired values
which work well on the entire training set

The changes to unimportant feature weights will be random (sometimes up,
sometimes down), and the weights will tend towards zero (meaning: no effect
on the classification)

Perceptron Update |l

Saywe have -2000...0000.5, and see this training
example. Clearly we will get it wrong...

1*-2 -2

N

Bias term
-3 lemma_the

-2 lemma_Seminar

-1 lemma_at
+1 lemma 4

+1_Digit

+2_timeid O 1*0.5 0.5

O OO OO OO0O0O00OoOo

features. Score is now better (but still wrong)

Perceptron Update |l

So change the weight vector, by adding 0.1 to all active

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2_timeid

0.6

-1.9
0
0.1
0
0.1

0
0
0.1
0.1

0

0.1

1*-1.9

1%0.1

1*0.1

1%0.1

1%0.1

1*0.1
1%0.6

-1.9

0.1

0.1

Perceptron Update [V

After looking at many other examples, irrelevant features (like "-3_lemma_the") are
pushed back towards zero, and important features have stronger weights.

We have learned a good weight vector for this example, no further update is needed

Bias term

-3 lemma_the

-2 lemma_Seminar
-1 lemma_at

+1 lemma 4

+1_Digit
+2_timeid

-2.1
0
-0.1
0
0.1
0
0
0.7
0
0
1.1
1.2

1*-2.1

1*-0.1

1*0.1

1*0.7

-2.1

-0.1

0.1

Word embeddings

Word embeddings such as the popular word2vec embeddings are a
clever way to get better features

* Word embeddings are learned on huge amounts of text

* Details in next week's lecture

Word-types are represented as positions in a 50-dimensional space
* For each word-type, we look up its embedding in a table

Similar words are close to each other in this space, for instance:

* AM and PM (words for which SemCat=timeid) will have very similar
representations

* Different words with the same lemma will have very similar representations

So when using word embeddings, we do not need the contexi-
independent features

* And the embedding space captures many generalizations about word-types
that we didn’t actively know would help!

* These generalizations become available to the learner, which can choose to
use them if they are helpful for learning the training data

. the Seminar at <stime> 4 om will ...

Condition |50-dimen. word-type embeddings |Context |Action
(only 3 dimensions shown) Dep

Word

the

Seminar

at

PmMm

will

Dim 1

-0.234

0.555

-0.165

0.122

0.001

-0.812

Dim 2

0.155

0.888

-0.122

0.095

0.001

0.201

Dim 3 ..

0.001

0.002

0.001

-0.003

0.999

0.002

Art

Noun

Prep

Digit

Other

Verb

stime

Contextualized embeddings

Contextualized word embeddings allow us to get a different
representation of each word token, rather than word-type

* The entire sentence is used as context

+ Some popular contextualized embeddings are ELMO and BERT

Contextualized word embeddings capture the same information as word-
type embeddings

But they additionally capture features that are context-dependent

Makes many more generalizations available to the learner!
* Part-of-Speech (POS) distinctions will be accessible (as in our example)
* Polysemy, tokens of a word-type with the same word sense will have similar
embeddings
« Syntactic positions will be captured (e.g., Subject, Verb, Object)
« Semantic roles will also be captured (e.g., Agent, Patient in a passive sentence)
e FEtc.

Typically something like 400 dimensional vectors for each word token
* Input for computing the word-token embeddings is the entire sentence

Two classes

So far we discussed how to deal with a single label

* At each position between two words we are asking whether
there is a <stime> tag

This is called binary classification
However, we are interested in <stime> and </stime> tags
How can we deal with this?

We can simply train one classifier on the <stime>
prediction task
* Here we are treating </stime> positions like every other non
<stime> position
And train another classifier on the </stime> prediction
task
« Likewise, freating <stime> positions like every other non </
stime> position

If both classifiers predict "true” for a single position, take
the one that has the highest dot product

More than two labels

* We can generalize this idea o many
possible labels

 This is called multiclass classification

* We are picking one label (class) from a set of
classes

* Forinstance, maybe we are also interested
IN the <efime> and </etime> labels
 These labels indicate seminar end times, which

are also offen in the announcement emails (see
next slide)

CMU Seminars - Example

<0.24.4.93.20.59.10.jgc+@NL.CS.CMU.EDU (Jaime Carbonell).0>
Type:. cmu.cs.proj.mt

Topic: <speaker>Nagao</speaker> Talk

Dates: 26-Apr-93

Time: <stime>10:00</stime> - <etime>11:00 AM</etime>

PostedBy: jgc+ on 24-Apr-93 at 20:59 from NL.CS.CMU.EDU (Jaime
Carbonell)

Abstract:

<paragraph><sentence>This Monday, 4/26, <speaker>Prof. Makoto
Nagao</speaker> will give a seminar in the <location>CMT red
conference room</location> <stime>10</stime>-<etime>11am</etime>
on recent MT research results</sentence>.</paragraph>

One against all

We can generalize the way we handled two binary
classification decisions to many labels

Let's add the <etime> and </etime> labels

We can train a classifier for each tag

* Just as before, every position that is not an <etime> is @
negative example for the <etime> classifier, and likewise
for </efime>

If multiple classifiers say "true”, fake the classifier with
the highest dot product

This is called one-against-all

It is a quite reasonable way to use binary
classification to predict one of multiple classes

* It is not the only option, but it is easy to understand (and
to implement tool)

Summary: Multiclass classification

* We discussed one-against-all, a framework
for combining binary classifiers

* |t is not the only way to do this, but it offen
works pretty well

* There are also fechnigues involving building
classifiers on different subsets of the data and
voting for classes

* And other techniques can involve, e.g., @
sequence of classification decisions (for
INnstance, a tree-like structure of classifications)

Binary classifiers and sequences

* AS we saw a few lectures ago, we can
detect seminar start times by using two
binary classifiers:

* One for <stime>
* One for </stime>

 And recall that if they both say "frue” to
the same position, take the highest dof
product

* Then we need to actually annotate the
document

* But this is problematic...

Some concerns

t t t

Begin Begin End

L A t
t t

Begin End
Slide from Kauchak

A basic approach

One way to deal with this is to use a greedy algorithm
Loop:

« Scan the document until the <stime> classifier says frue

* Then scan the document until the </stime> classifier says frue

If the last tag inserted was <stime> then insert a </stime>
at the end of the document

Naturally, there are smarter algorithms than this that will
do a little better

But the major problem here is more basic.
* Relying on these two independent classifiers is not optimall

How can we deal better with sequences?

 We can make our classification
decisions dependent on previous
classification decisions

* For instance, think of the Hidden
Markov Model as used in POS-tagging

* The probabillity of a verb increases after
a Noun

Basic Sequence Classification

* We will do the following

* We will add a feature template into each
classification decision representing the
previous classification decision

* And we will change the labels we are
predicting, so that in the span between a
start and end boundary we are predicting
a different label than outside

Basic 1ded

Seminar at 4 oM
<stime> iNn-stime </stime>

 The basic idea is that we want to use the previous
classification decision

« We add a special feature template -1_label XXX

* Forinstance, between 4 and pm, we have:
-1_label_<stime>

+ Suppose we have learned reasonable classifiers

* How often should we get a <stime> classification
here¢ (Think about the fraining data in this sort of
position)

-1 label <stime>

* This should be an extremely strong
Indicator not to annotate a <stime>

* What else should It indicate?

* [t should indicate that there must be either
a in-stime or a </stime> herel

Changing the problem slightly

* We'll now change the problem to @
problem of annotating tokens (rather
than annotating boundaries)

* This Is fraditional in IE, and you'll see
that it Is slightly more powerful than the
boundary style of annotation

* We also make less decisions (see next
slide)

IOB markup

Seminar at 4 oM will be on
O O B-stime l-stime O O O

* Thisis called IOB markup (or BIO = begin-in-out)
* Thisis a standardly used markup when modeling |E
problems as sequence classification problems

« We can use a variety of models to solve this problem
 One popular model is the Hidden Markov Model,
which you have seen in Stafistical Methods
* There, the label is the state
* However, in this course we will (mostly) stay more
general and talk about binary classifiers and one-
against-all

(Greedy) classification with [OB

Seminar at 4 oM will be on
O O B-stime l-stime O O O

To perform greedy classification, first run your classifier on
"Seminar”

You can use a label feature here like
-1_Label_StartOfSentence

Suppose you correctly choose "O"

Then when classifying "at", use the feature:
-1_Label_O

Suppose you correctly choose "O"

Then when classifying "4", use the feature:
-1_Label_O

Suppose you correctly choose "B-stime”
Then when classifying "pm", use the feature:
-1_Label_B-stime

Efc...

Training

* How to create the training data (do
feature extraction) should be obvious

* We can just use the gold standard label of
the previous position as our feature

BIEWO Markup

* A popular alternative to IOB markup is
BIEWO markup

 Estands for "end"”

* W stands for "whole"”, meaning we have
a one-word entfity (i.e., this position is
both the begin and end)

Seminar at 4 pm will be
@) @) B-stime E-stime @) @) @)
Seminar t 4 will b

BIEWO vs |OB

* BIEWO fragments the training data

* Recall that we are learning a binary
classifier for each label

* In our two examples on the previous slide,
this means we are not using the same
classifiers!

* Use BIEWO when single-word mentions
require different features to be active
than the first word of a multi-word
mention

Conclusion

I've taught you the basics of:

« Binary classification using features

* | also briefly presented word-type embeddings (word2vec) and
contextualized word-token embeddings (e.g,. BERT, ELMO)

* Multiclass classification (using one-against-all)
« Sequence classification (using a feature that uses the previous
decision)
* And IOB or BIEWO labels
I've skipped a lot of details

* | haven't talked about non-greedy ways to do sequence
classification

 And | didn't talk about probabilities, which are used directly, or
at least approximated, in many kinds of commonly used linear
models!
Hopefully what | did tell you is fairly intuifive and helps you
understand classification, that is the goal

* Further reading:
* Tom Mitchell. Machine Learning. McGraw Hill
1997 (text book, not free)
* More advanced, highly recommended:
* Hal Daumé lll. A Course in Machine Learning.
2017 (beta version 0.99, free, or 1.0, not free)
* Word embeddings (including word2vec,
ELMO, BERT):

* Noah Smith. Contextual Word Representations:
A Contextual Introduction. arXiv 2019 (short
article, free)

Time allowing

* Time allowing, | will briefly cover some of
our work on using a linear model in Moses
to select phrases

* Moses primarily uses the two feature functions
phrase-based p(e | f) and p(f]| e)
* These are learned from the word alignment

* p(e|f)is the percentage of times that the
source phrase fis translated to the target
phrase e

 An alternative is to use a linear classifier with
features based on context instead of this simple
statistic

 Questions?e

* Thank you for your attention!

