Target-Side Context for Discriminative Models in Statistical MT

Aleš Tamchyna, Alexander Fraser, Ondřej Bojar, Marcin Junczys-Dowmunt

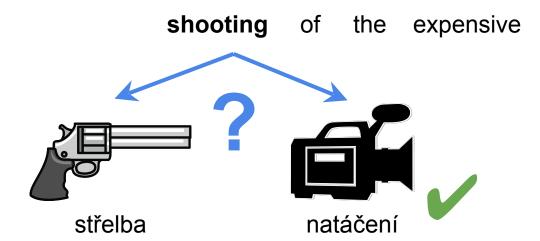
ACL 2016

August 9, 2016

Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Conclusion

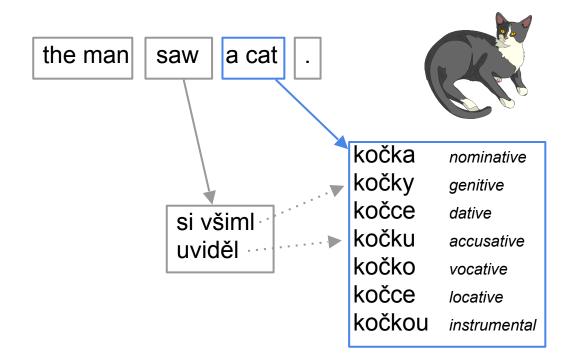
Why Context Matters in MT: Source



Wider **source** context required for disambiguation of word **sense**.

Previous work has looked at using source context in MT.

Why Context Matters in MT: Target



Correct case depends on how we translate the previous words.

Wider **target** context required for disambiguation of word **inflection**.

How Does PBMT Fare?

shooting of the **film** .

natáčení filmu .

shooting of the expensive **film** .

střelby na drahý film .

the man saw a cat.

muž uviděl **kočku**_{acc} .

the man saw **a black cat** . muž spatřil **černou**_{acc} **kočku**_{acc} .

the man saw **a yellowish cat** . muž spatřil $\mathbf{nažloutla}_{nom}$ $\mathbf{kočka}_{nom}$. $\boldsymbol{\mathsf{x}}$

Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Conclusion

A Discriminative Model of Source and Target Context

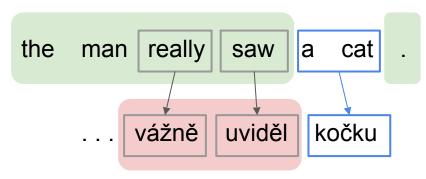
Let F, E be the source and target sentence.

Model the following probability distribution:
$$P(E|F) \propto \prod_{(\bar{e_i},\bar{f_i}) \in (E,F)} P(\bar{e_i}|\bar{f_i},F,e_{prev},e_{prev-1})$$
 source context target context

Where:

$$P(\bar{e_i}|\bar{f_i}, F, e_{prev}, e_{prev-1}) = \frac{\exp(\bar{w} \cdot \text{fv}(\bar{e_i}, \bar{f_i}, F, e_{prev}, e_{prev-1}))}{\sum\limits_{\bar{e'} \in \text{GEN}(\bar{f_i})} \exp(\bar{w} \cdot \text{fv}(\bar{e'}, \bar{f_i}, F, e_{prev}, e_{prev-1}))}$$

Model Features (1/2)



Label Independent (S = shared):

- source window: -1^saw -2^really ...

source words: a catsource phrase: a cat

context window: -1^uviděl -2^vážně

context bilingual: saw^uviděl really^vážně

Label Dependent (T = translation):

target words: kočkutarget phrase: kočku

Full Feature Set: { S×T ∪ S ∪ T }

cat&kočku ...a_cat&kočku ... saw^uviděl&kočku ... -1^uviděl&kočku ... a_cat ... kočku

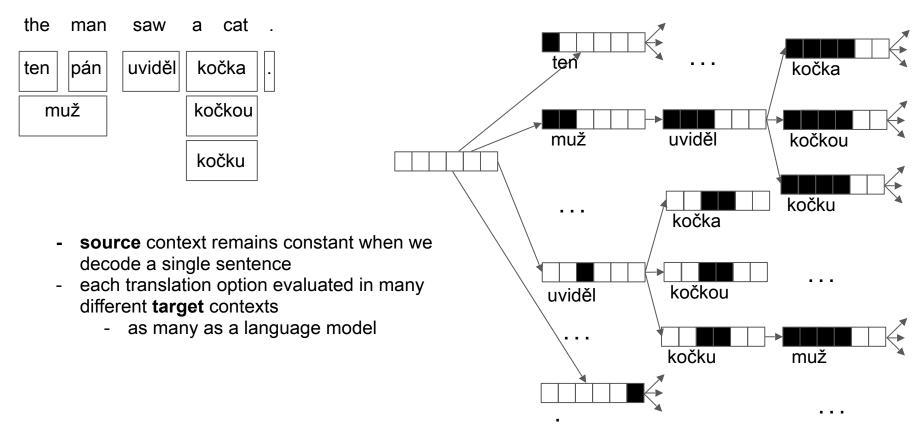
Model Features (2/2)

- train a single model where each class is defined by label-dependent features
- **source:** form, lemma, part of speech, dependency parent, syntactic role
- target: form, lemma, (complex) morphological tag (e.g. NNFS1----A---)
- Allows to learn e.g.:
 - subjects (role=Sb) often translate into nominative case
 - nouns are usually accusative when preceded by an adjective in accusative case
 - lemma "cat" maps to lemma "kočka" regardless of word form (inflection)

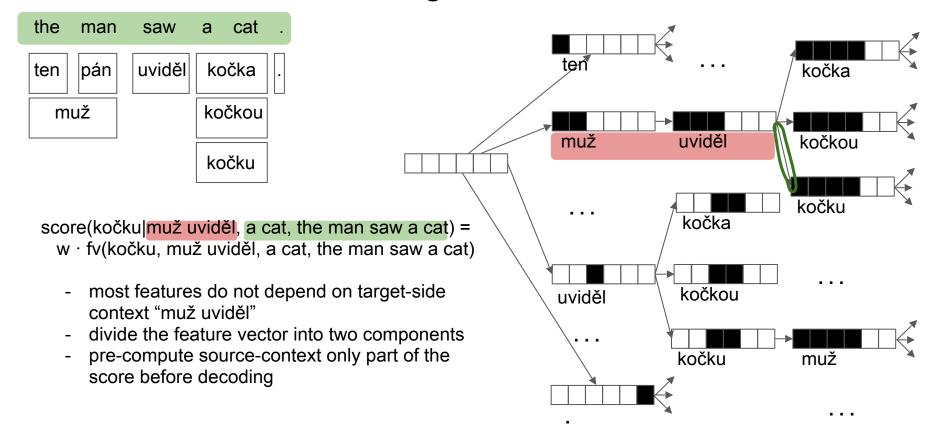
Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Conclusion

Challenges in Decoding



Trick #1: Source- and Target-Context Score Parts



Tricks #2 and #3

- Cache feature vectors

- each translation option ("kočku") will be seen multiple times during decoding
 - cache its feature vector before decoding
- target-side contexts repeat within a single search ("muž uviděl" -> *)
 - cache context features for each new context

- Cache final results

- pre-compute and store scores for all possible translations of the current phrase
 - needed for normalization anyway

Evaluation of Decoding Speed

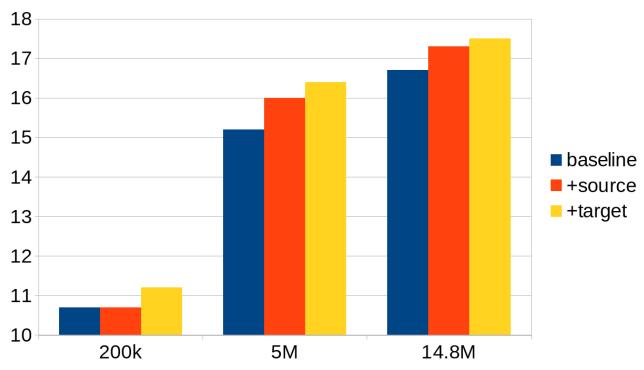
Integration	Avg. Time per Sentence	
baseline	0.8 s	
naive: only #3	13.7 s	
+tricks #1, #2	2.9 s	



Outline

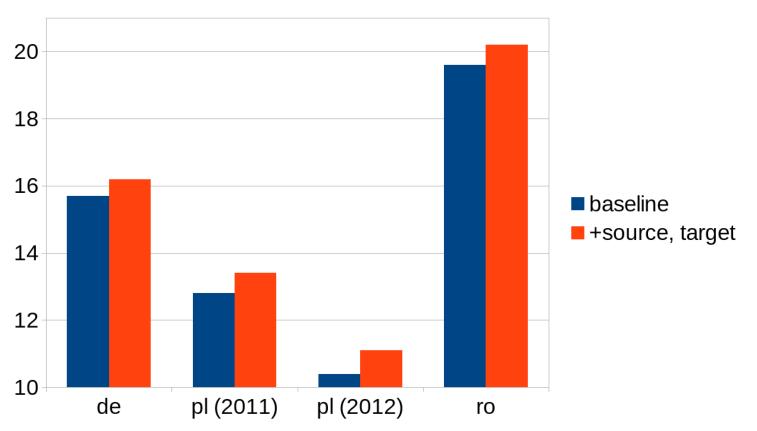
- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Conclusion

Scaling to Large Data



- BLEU scores, English-Czech translation
- training data: subsets of CzEng 1.0

Additional Language Pairs



Manual Evaluation

- blind evaluation of system outputs, 104 random test sentences
- English-Czech translation
- sample BLEU scores: 15.08, 16.22, 16.53

Setting	Equal	Baseline is better	New is better
baseline vs. +source	52	26	26
baseline vs. +target	52	18	34

Conclusion

- novel discriminative model for MT that uses both source- and target-side context information
- (relatively) efficient integration directly into MT decoding
- significant improvement of BLEU for English-Czech even on large-scale data
- consistent improvement for three other language pairs
- model freely available as part of the Moses toolkit

Thank you!

Questions?

Extra slides

Intrinsic Evaluation

- the task: predict the correct translation in the current context

- baseline: select the most frequent translation from the candidates, i.e., translation with the highest P(e|f) shooting

- English-Czech translation, tested on WMT13 test set Model Accuracy

baseline 51.5

+source context 66.3

+target context 74.8*

Model Training: Parallel Data

the black cat noticed the man.

pachatelé po střelbě uprchli. gunmen fled after the shooting. natáčení drahého filmu. shooting of an expensive film. režisér odešel z natáčení the director left the shooting. the man saw a black cat. muž viděl černou|A4 kočku|N4.

černá|A1 kočka|N1 viděla muže

Training examples:

- + střelbě&gunmen střelbě&fled ...
- natáčení&gunmen natáčení&fled ...
- střelbě&film střelbě&expensive ...
- + natáčení&film natáčení&fled ...
- střelbě&director střelbě&left ...
- + natáčení&director natáčení&left ...
- prev=A4&N1 prev=A4&kočka ...
- + prev=A4&N4 prev=A4&kočku ...
- + prev=A1&N1 prev=A1&kočka ...
- prev=A1&N4 prev=A1&kočku ...

Model Training

- Vowpal Wabbit
- quadratic feature combinations generated automatically
- objective function: logistic loss
- setting: --csoaa_ldf mc
- 10 iterations over data
 - select best model based on held-out accuracy
- no regularization

Training Efficiency

- huge number of features generated (hundreds of GBs when compressed)
- feature extraction
 - easily parallelizable task: simply split data into many chunks
 - each chunk processed in a multithreaded instance of Moses
- model training
 - Vowpal Wabbit is fast
 - training can be parallelized using VW AllReduce
 - workers train on independent chunks, share parameter updates with a master node
 - linear speed-up
 - 10-20 jobs

Additional Language Pairs (1/2)

- English-German

- parallel data: 4.3M sentence pairs (Europarl + Common Crawl)
- dev/test: WMT13/WMT14

- English-Polish

- not included in WMT so far
- parallel data: 750k sentence pairs (Europarl + WIT)
- dev/test: IWSLT sets (TED talks) 2010, 2011, 2012

- English-Romanian

- included only in WMT16
- parallel data: 600k sentence pairs (Europarl + SETIMES2)
- dev/test: WMT16 dev test, split in half

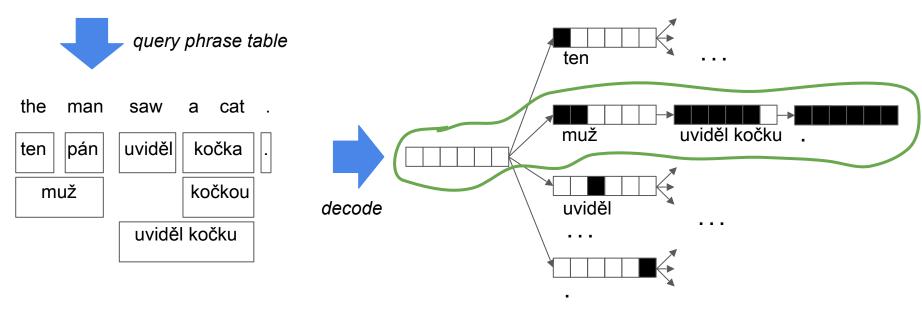
LMs over Morphological Tags

- a stronger baseline: add LMs over tags for better morphological coherence
- do our models still improve translation?
- 1M sentence pairs, Englishernech translation

baseline	13.0
+tag LM	14.0
+source	14.5
+target	14.8

Phrase-Based MT: Quick Refresher

the man saw a cat.



 $P_{LM} = P(mu\check{z}|<s>) \cdot P(uvid\check{e}|ko\check{c}ku|<s>mu\check{z}) \cdot ... \cdot P(</s> | ko\check{c}ku|)$

System Outputs: Example

input: the most intensive mining took place there from 1953 to 1962.

baseline: nejvíce intenzivní těžba došlo tam z roku 1953, aby 1962.

the_most intensive mining_{nom} there_occurred there from 1953 , in_order_to 1962 .

+source: nejvíce intenzivní těžby místo tam z roku 1953 do roku 1962.

the_most intensive mining_{gen} place there from year 1953 until year 1962.

+target: nejvíce intenzivní těžba probíhala od roku 1953 do roku 1962.

the_most intensive mining $_{nom}$ occurred from year 1953 until year 1962.

