Einführung in die Computerlinguistik Machine Translation

Hinrich Schütze

Center for Information and Language Processing

2019-01-14

Outline

- Noisy channel model
- 2 Machine translation

3 Language models

Outline

- Noisy channel model
- 2 Machine translation

3 Language models

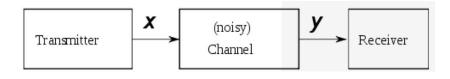
Fred Jelinek

IBM Watson approach to NLP

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
\begin{aligned} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{aligned}
```

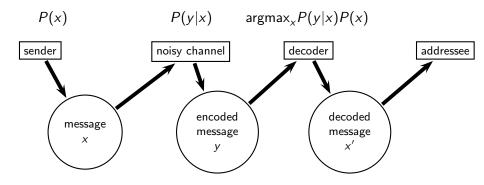
Noisy channel



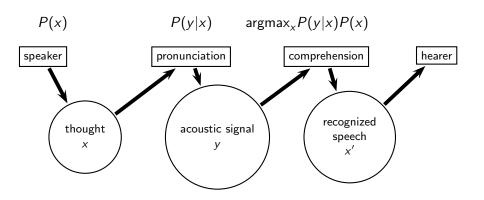
Well-known examples of applications of noisy channel model?

Decode 788884278

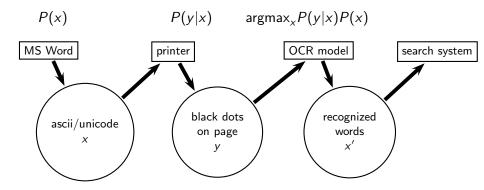
Noisy channel: Information theory / telecommunications



Noisy channel: Speech recognition



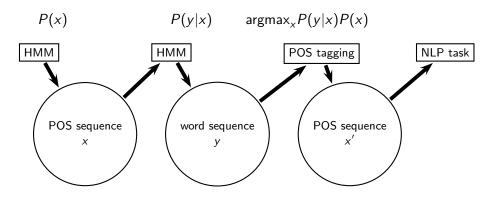
Noisy channel: Optical character recognition



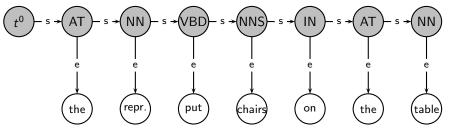
Part-of-speech tagging

- Given a sequence of words (a sentence), how do we compute the corresponding (disambiguated) part-of-speech sequence?
- Example:
 - Input: "the representative put chairs on the table"
 - Output: "AT NN VBD NNS IN AT NN"
- $t_{1,n} = \operatorname{argmax}_{t_{1,n}} P(t_{1,n}|w_{1,n}) = \operatorname{argmax}_{t_{1,n}} P(w_{1,n}|t_{1,n})t_{1,n})$

Noisy channel: Part-of-speech tagging



Noisy channel: Part-of-speech tagging



IBM Watson approach to NLP

- sequence model
- in most cases: given an observation or evidence, select the most likely sequence that caused the observation
- We will only consider word sequences for now.

```
\begin{aligned} & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= & \operatorname{argmax}_{\operatorname{word-sequence}} \quad P(\operatorname{evidence}|\operatorname{word-sequence}) \quad P(\operatorname{word-sequence}) \end{aligned}
```

Classical approach to speech recognition

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ \\ = & \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

- word sequence: sequence of words
- evidence: acoustic signal

Machine translation

 P(evidence|word-sequence): a model of how humans translate a sequence of (written) words into acoustics

Classical approach to optical character recognition

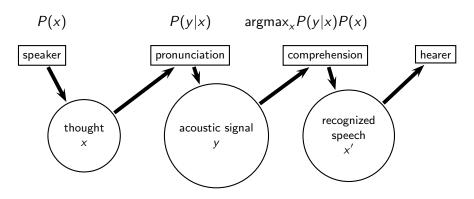
$$\begin{split} & \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} P(\mathsf{word}\text{-}\mathsf{sequence}|\mathsf{evidence}) \\ = & \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} \frac{P(\mathsf{evidence}|\mathsf{word}\text{-}\mathsf{sequence}) P(\mathsf{word}\text{-}\mathsf{sequence})}{P(\mathsf{evidence})} \\ = & \operatorname{argmax}_{\mathsf{word}\text{-}\mathsf{sequence}} \quad P(\mathsf{evidence}|\mathsf{word}\text{-}\mathsf{sequence}) \quad P(\mathsf{word}\text{-}\mathsf{sequence}) \end{split}$$

- word sequence: sequence of words
- evidence: image
- P(evidence|word-sequence): a model of how a machine (e.g., a desktop printer) translates a sequence of words into printed letters/symbols

Exercise: Noisy channel model for machine translation?

speech

- word sequence: sequence of words
- evidence: acoustic signal
- P(evidence|word-sequence): a model of how humans translate a sequence of (written) words into acoustics



Classical approach to machine translation $(French \rightarrow English)$

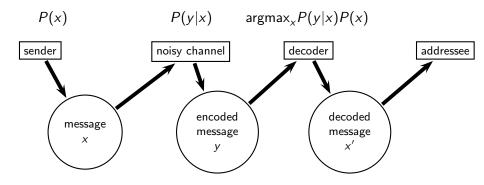
```
\operatorname{argmax}_{word\text{-sequence}} P(\operatorname{word\text{-sequence}}|\operatorname{evidence})
                                  P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})
argmaxword-sequence
                                                         P(evidence)
                                    P(\text{evidence}|\text{word-sequence}) \quad P(\text{word-sequence})
argmax word-sequence
```

- word sequence: sequence of English words
- evidence: sequence of French words

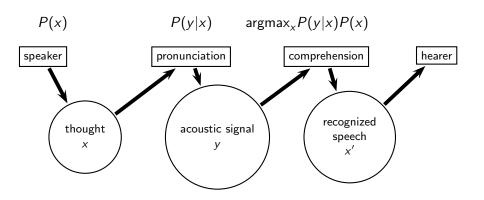
Machine translation

 P(evidence|word-sequence): a model of how humans translate a sequence of English words into a sequence of French words

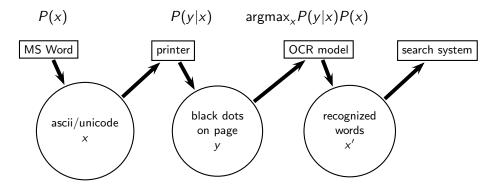
Noisy channel: Information theory / telecommunications



Noisy channel: Speech recognition

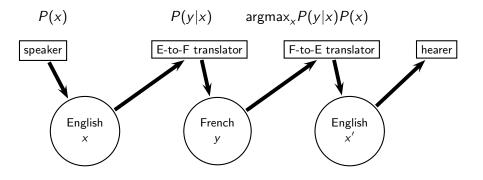


Noisy channel: Optical character recognition



21 / 49

Noisy channel: French-to-English machine translation

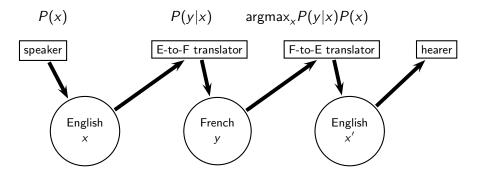


Outline

1 Noisy channel model

- 2 Machine translation
- 3 Language models

Noisy channel: French-to-English machine translation



Noisy channel model Machine translation
Schütze: Machine Translation

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ &= \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

```
argmax_{word-sequence}P(word-sequence|evidence)
                       P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})
argmax<sub>word-sequence</sub>
                         P(evidence|word-sequence)
                                                             P(word-sequence)
argmax<sub>word-sequence</sub>
translation mo
```

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

language model

```
argmax_{word-sequence}P(word-sequence|evidence)
                       P(\text{evidence}|\text{word-sequence})P(\text{word-sequence})
argmax<sub>word-sequence</sub>
                         P(evidence|word-sequence)
                                                             P(word-sequence)
argmax<sub>word-sequence</sub>
translation mo
```

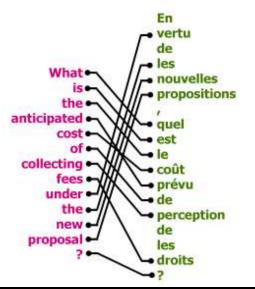
How to build a translation model

- Find a parallel corpus a body of text where each sentence is available in two or more languages
- IBM Watson used the Canadian Hansards, the proceedings of the Canadian Parliament.
- Compute a word alignment for the parallel corpus (next slide)
- Estimate a translation model from the word alignment (that is, the model that models how humans generate French sentences from English sentences)

Empty cept

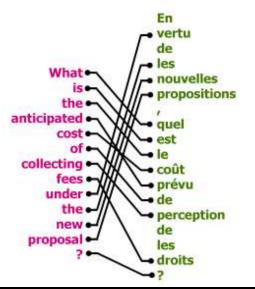
- Our model is a generative model: The French sentence is generated based on the English sentence.
- Every French word is "caused" by an English word.
- causation = alignment
- But many French words are not aligned, i.e., they have no plausible English word they correspond to.
- To cover these unaligned French words, we introduce the "empty cept" e₀.
- The empty cept e_0 is an artificial English word that all unaligned French words are aligned with.
- Now every French word is "caused" by an English word.

Exercise: Estimating word translation probabilities



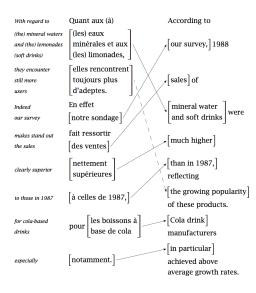
Estimate: $P(e_i|\text{nouvelles})$ $P(f_j|\text{fees})$ $P(f_j|\text{the})$ $P(f_i|e_0)$

Exercise: Estimating word translation probabilities



Estimate: $P(e_i|\text{nouvelles})$ $P(f_j|\text{fees})$ $P(f_j|\text{the})$ $P(f_i|e_0)$

"Linguistic" word/phrase alignment of a parallel corpus



Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Basic translation model

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

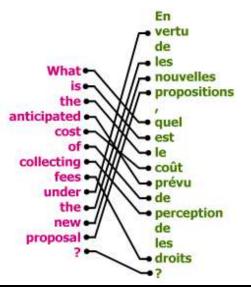
$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Exercise: Estimating word translation probabilities



Estimate: $P(e_i|\text{nouvelles})$ $P(f_j|\text{fees})$ $P(f_j|\text{the})$ $P(f_i|e_0)$

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Formalization of alignment

6 0		Ω1		^		1			
e ₀ e ₁ e ₂									
empty cept they descended									
f_1	$f_1 \qquad f_2$		f_3						
runter gingen		sie							
a_1	a ₂	<i>a</i> ₃	a_1	a_2	<i>a</i> ₃		a_1	<i>a</i> ₂	<i>a</i> ₃
0	0	0	1	0	0	-	2	0	0
0	0	1	1	0	1		2	0	1
0	0	2	1	0	2		2	0	2
0	1	0	1	1	0		2	1	0
0	1	1	1	1	1		2	1	1
0	1	2	1	1	2		2	1	2
0	2	0	1	2	0		2	2	0
0	2	1	1	2	1		2	2	1
0	2	2	1	2	2		2	2	2

$$P(f|e) \propto \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} P(\langle a_1, \dots, a_m \rangle) \prod_{j=1}^{m} P(f_j|e_{a_j})$$

- e: English sentence, e_i: ith word in e
- I: length of English sentence
- f: French sentence, f_i : j^{th} word in f
- m: length of French sentence
- e_{a_j} is the English word that f_j is aligned with this assumes that the alignment is a (total) function:

$$a: \{1, 2, \ldots, m\} \mapsto \{0, 1, \ldots, l\}$$

- There is a special word e_0 , the empty cept, that all unaligned French words are aligned to.
- $P(f_j|e_{a_j})$ is the probability of e_{a_j} being translated as f_j .
- $P(\langle a_1, \ldots, a_m \rangle)$ is the probability of alignment $\langle a_1, \ldots, a_m \rangle$.

Exercise

What's bad about this model? What type of linguistic phenomenon will not be translated correctly?

What's bad about this model

- Collocations, noncompositional combinations: "piece of cake"
 - Assumption violated: Each English word generates German translations independent of the other words.
- Compounds: "Kirschkuchen" vs. "cherry pie"
 - Assumption violated: For each German/French word there is a single English word reponsible for it.
- Unlikely alignments: "siehst Du" vs. "(do) you see"
 - Assumption violated: The probability of a particular alignment is independent of the words.

What's bad about this model (2)

- Morphology: "Kind" "Kindes"
- Gender and case
- Syntax: which types of differences between German syntax and English syntax could be a problem?

Google Translate

38 / 49

Outline

1 Noisy channel model

2 Machine translation

3 Language models

The two key components of the model

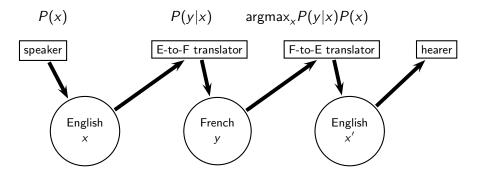
```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} & \underline{P(\operatorname{evidence}|\operatorname{word-sequence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} & \underline{P(\operatorname{evidence}|\operatorname{word-sequence})} \\ & P(\operatorname{evidence}|\operatorname{word-sequence}) \\ & \text{translation model} \end{array}
```

The two key components of the model

```
\begin{array}{ll} \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{word-sequence}|\operatorname{evidence}) \\ = \operatorname{argmax}_{\operatorname{word-sequence}} \frac{P(\operatorname{evidence}|\operatorname{word-sequence})P(\operatorname{word-sequence})}{P(\operatorname{evidence})} \\ = \operatorname{argmax}_{\operatorname{word-sequence}} P(\operatorname{evidence}|\operatorname{word-sequence}) P(\operatorname{word-sequence}) \end{array}
```

language model

Noisy channel: French-to-English machine translation



Noisy channel model Mac Schütze: Machine Translation

Why the language model is important

- Classical example from speech recognition
- The following two are almost indistinguishable acoustically.
- "wreck a nice beach"
- "recognize speech"
- If we had only the translation model P(y|x), then we would not be able to make a good decision.
- We need the language model for this decision.
- $P(\text{"wreck a nice beach"}) \ll P(\text{"recognize speech"})$
- We'll choose "recognize speech" based on this.

Bigram language model

$$P(w_{1,2,...,n}) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

- Key problem: How do we estimate the parameters?
- $P(w_i|w_{i-1})$?

Maximum likelihood = Relative frequency

$$P_{ML}(w_2|w_1) = \frac{C(w_1w_2)}{C(w_1)}$$

where C(e) is the number of times the event e occurred in the training set.

Example:

$$p_{\mathrm{ML}}(\mathsf{be}|\mathsf{would}) = \frac{C(\mathsf{would}|\mathsf{be})}{C(\mathsf{would})} = \frac{18454}{83735} \approx 0.22$$

Why maximum likelihood does not work

- Suppose that "Dr." and "Cooper" are frequent in our corpus. Frequency of "Dr." = 10000
- But suppose that the sequence "Dr. Cooper" does not occur in the corpus.
- What is the maximum likelihood estimate of P(Cooper|Dr.)?

$$P_{ML}(\mathsf{Cooper}|\mathsf{Dr.}) = \frac{C(\mathsf{Dr.\ Cooper})}{C(\mathsf{Dr.})} = \frac{0}{10000} = 0$$

- This means that in machine translation, any English sentence containing "Dr. Cooper" would be deemed impossible and could not be output by the translator.
- This problem is called sparseness.

Machine translation

 Ideally, we would need knowledge about events and their probability that never occurred in our training corpus.

Laplace = Add-one smoothing

$$P_L(w_2|w_1) = \frac{C(w_1w_2) + 1}{C(w_1) + |V|}$$

where C(e) is the number of times the event e occurred in the training set, V is the vocabulary of the training set and $w_{i,j}$ is the sequence of words $w_i, w_{i+1}, \ldots, w_{j-1}, w_j$.

Better estimator:

$$P_L(\text{Cooper}|\text{Dr.}) = \frac{0+1}{10000 + 256873} \approx 0.0000037 > 0$$

So now our machine translation system has a chance of finding a good English translation that contains the phrase "Dr. Cooper".

Exercise

the three women saw the small mountain behind the large mountain

Compute maximum likelihood and laplace estimates for: P(three|the) and P(saw|the)

Besonders klausurrelevant

- Noisy channel model
- Translation models
- Estimation of translation models
- Language models
- Estimation of language models

Besonders klausurrelevant

- P(e)
- P(f|e)
- empty cept
- $\operatorname{argmax} P(f|e)P(e)$